The work of Artur Avila

Étienne Ghys, CNRS ENS Lyon, France

Newton :

You are given an ordinary differential equation and your task is to find its solutions.

Newton :

You are given an ordinary differential equation
and your task is to find its solutions.

Poincaré :

You are given an ordinary differential equation and your task is to find its solutions.

Poincaré :

You are given an ordinary differential equation and your task is to say something about its solutions.

Newton :

You are given an ordinary differential equation and your task is to find its solutions.

Poincaré :

You are given an ordinary differential equation and your task is to say something about its solutions.

Thom-Smale :

You are given an ordinary differential equation and your task is to find its solutions.

Poincaré :

Thom-Smale :

You are given an ordinary differential equation and your task is to say something about its solutions.

You are not given an ordinary differential equation and your task is to say something about its solutions.

What does a typical dynamical system look like?

Dynamics in dimension 1

Orbit $\left\{f^{n}(x)\right\}$

Theorem (Avila, de Melo, Lyubich, 2003 + Avila, Moreira, 2005) : In a non-trivial real analytic family $f_{\lambda}\left(\lambda \in \Lambda \subset \mathbf{R}^{N}\right)$ of unimodal maps, there is a dichotomy :

For almost every λ, the map f_{λ} is either Regular or Stochastic.

Regular : Almost every orbit (w.r.t. Lebesgue) converges to an attracting cycle.

Stochastic: there is an absolutely continuous invariant measure μ such that almost every orbit in $[0,1]$ (w.r.t. Lebesgue) is distributed according to μ, or converges to a cycle.

Theorem (Avila, de Melo, Lyubich, 2003 + Avila, Moreira, 2005) :
In a non-trivial real analytic family $f_{\lambda}\left(\lambda \in \Lambda \subset \mathbf{R}^{N}\right)$ of unimodal maps, there is a dichotomy.

For almost every λ, the map f_{λ} is either

- Regular : almost every orbit (w.r.t. Lebesgue) converges to an attracting cycle,
or
- Stochastic : there is an absolutely continuous invariant measure μ such that almost every orbit in $[0,1]$ (w.r.t. Lebesgue) is distributed according to μ, or converges to a cycle.

Misha Lyubich :
"We have reached a full probabilistic understanding of real analytic unimodal dynamics, and Artur Avila has been the key player in the final stage of the story".

Renormalization

Renormalization

Renormalization

Renormalization

Adrien Douady :
"We first plough in the dynamical plane and then harvest in parameter plane"

Dynamical plane
(Van Gogh)

Parameter plane (Pissaro)

$$
X
$$

n

Renormalization on the space of unimodal maps

Billiards

$$
\overline{X X}
$$

Theorem (Avila, Forni, 2007) : Almost all (irreducible) interval exchange transformations are weakly mixing.

$f: X \rightarrow X$ preserves a probability measure μ.

- Mixing : $\lim _{n \rightarrow \infty} \mu\left(A \cap f^{n}(B)\right)=\mu(A) \mu(B)$.
- Weakly mixing : $\lim _{n \in E \rightarrow \infty} \mu\left(A \cap f^{n}(B)\right)=\mu(A) \mu(B)$.
$\left(E \subset \mathbf{Z}\right.$ has density 1 , i.e. $\left.\lim _{k \rightarrow \infty} \frac{1}{k} \sharp(\{1, \ldots, k\} \cap E)=1\right)$.
$f: X \rightarrow X$ preserves a probability measure μ.
— Mixing : $\lim _{n \rightarrow \infty} \mu\left(A \cap f^{n}(B)\right)=\mu(A) \mu(B)$.
- Weakly mixing : $\lim _{n \in E \rightarrow \infty} \mu\left(A \cap f^{n}(B)\right)=\mu(A) \mu(B)$.
$\left(E \subset \mathbf{Z}\right.$ has density 1, i.e. $\left.\lim _{k \rightarrow \infty} \frac{1}{k} \sharp(\{1, \ldots, k\} \cap E)=1\right)$.

Theorem (Avila, Forni, 2007) : Almost all (irreducible) interval exchange transformations are weakly mixing.

Quasi-periodic Schrödinger operators
$I^{2}(\mathbf{Z})=\left\{\psi:\left.\mathbf{Z} \rightarrow \mathbf{C} \quad\left|\quad \sum_{n}\right| \psi(n)\right|^{2}<\infty\right\}$
Schrödinger equation : $i \frac{\partial \psi}{\partial t}=H \psi$
$H \psi(n)=\psi(n+1)+\psi(n-1)+V(n) \psi(n)$
$I^{2}(\mathbf{Z})=\left\{\psi:\left.\mathbf{Z} \rightarrow \mathbf{C} \quad\left|\quad \sum_{n}\right| \psi(n)\right|^{2}<\infty\right\}$
Schrödinger equation : $i \frac{\partial \psi}{\partial t}=H \psi$
$H \psi(n)=\psi(n+1)+\psi(n-1)+V(n) \psi(n)$

Spectrum : $\sigma(H)=\left\{E \in \mathbf{R} \quad \mid(H-E . I d)^{-1}\right.$ does not exist $\}$
$I^{2}(\mathbf{Z})=\left\{\psi:\left.\mathbf{Z} \rightarrow \mathbf{C} \quad\left|\quad \sum_{n}\right| \psi(n)\right|^{2}<\infty\right\}$
Schrödinger equation : $i \frac{\partial \psi}{\partial t}=H \psi$
$H \psi(n)=\psi(n+1)+\psi(n-1)+V(n) \psi(n)$

Spectrum : $\sigma(H)=\left\{E \in \mathbf{R} \quad \mid(H-E . I d)^{-1} \quad\right.$ does not exist $\}$
Spectral measure : $\langle\psi, g(H) \psi\rangle=\int g d \mu_{\psi}$

Spectral measure
$■$ absolutely continuous \Longrightarrow the particle travels freely.
$■$ singular continuous \Longrightarrow the particle travels somewhat.
■ pure point \Longrightarrow does not travel.

Almost Mathieu operator :

$$
V(n)=2 \lambda \cos (2 \pi n \alpha)
$$

Hofstadter's butterfly

Theorem (Avila, Jitomirskaya, 2009) : Ten Martini conjecture.
For all $\lambda \neq 0$, and all irrational α, the spectrum $\sigma_{\lambda, \alpha}$ is a Cantor set.

Theorem (Avila, Krikorian, 2006) : Aubry André's conjecture.
$\operatorname{Leb}\left(\sigma_{\lambda, \alpha}\right)=4|1-|\lambda||$

Theorem (Avila-Jitomirskaya 2009, Avila-Damanik 2008, Avila 2009) :

For all irrational α and $|\lambda|<1$, the spectrum is purely absolutely continuous.

Conservative dynamics

On a compact C^{∞} manifold.

Well known and easy :
Any C^{1} diffeomorphism can be C^{1} approximated by C^{∞} diffeomorphisms.

On a compact C^{∞} manifold equipped with a C^{∞} volume form.

Theorem (Avila, 2010) :
Any C^{1} volume preserving diffeomorphism can be C^{1} approximated by C^{∞} diffeomorphisms which are volume preserving.

