
Foliations : What’s next after Thurston ?

The mathematical legacy of Bill Thurston,

Étienne Ghys, CNRS ENS Lyon



A dozen publications between 1972 and 1976



On proofs and progress in mathematics, Thurston 1994

“First I will discuss briefly the theory of foliations, which
was my first subject, starting when I was a graduate
student. [...]
I fairly rapidly proved some dramatic theorems. I proved a
classification theorem for foliations, giving a necessary
and sufficient condition for a manifold to admit a
foliation. I proved a number of other significant theorems.
I wrote respectable papers and published at least the
most important theorems. It was hard to find the time to
write to keep up with what I could prove, and I built up a
backlog.”



Foliations ?



“An interesting phenomenon occurred. Within a couple of
years, a dramatic evacuation of the field started to take
place. I heard from a number of mathematicians that they
were giving or receiving advice not to go into
foliations—they were saying that Thurston was cleaning it
out. People told me (not as a complaint, but as a
compliment) that I was killing the field. Graduate
students stopped studying foliations, and fairly soon, I
turned to other interests as well.”



Foliations

Codimension q foliation on a manifold X :

An open covering Ui of X .
Submersions fi : Ui → Rq.
A cocycle θi ,j of C∞ diffeomorphisms between open sets of Rq

such that θj ,k ◦ θi ,j = θi ,k where it is defined and fj = θi ,j ◦ fi .



Leçons de Stockholm (1895)



The Reeb component (1948)



1895 : Leçons de Stockholm (Painlevé).
1944-1948 : Foliation on the 3-sphere (Reeb).
1955-1958 : Inexistence of codimension 1 analytic foliations on
spheres (Haefliger).
1964 : Every codimension 1 foliation on the 3-sphere has a
compact leaf (Novikov).
1968 : Topological obstruction to integrability : certain plane
fields are not homotopic to a foliation (Bott).
1970 : Classifying space BΓ (Haefliger).



Thurston’s helical wobble (1971)



Helical wobble



On proofs and progress in mathematics, Thurston 1994

“I threw out prize cryptic tidbits of insight, such as “the
Godbillon-Vey invariant measures the helical wobble of a
foliation”, that remained mysterious to most
mathematicans who read them. This created a high entry
barrier : I think many graduate students and
mathematicians were discouraged that it was hard to
learn and understand the proofs of key theorems.”



Helical wobble

Alejandra Ruddoff “Diacronia” 2005



Godbillon-Vey invariant (1971)

A (transversaly orientable) codimension 1 foliation F on M is
defined by a 1-form ω.
Integrability of F implies ω ∧ dω = 0.
There exists α such that dω = ω ∧ α.
The 3-form α ∧ dα is closed.
Its cohomology class in H3(M,R) is independent of all
choices : this is the Godbillon-Vey invariant of F.
If dim(M) = 3 and if M is oriented, this is a number :
gv(F) ∈ R.
Two cobordant foliations have the same Godbillon-Vey
number.
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Theorem (Thurston 1971) :

There exists of family Fλ of foliations on S3 such that gv(Fλ)
varies continuously.



Helical wobble

Unit tangent bundle of the Poincaré disc T 1(D).
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Main open problem

Suppose that the Godbillon-Vey invariant of a codimension 1
foliation on a 3-manifold is 0. Does that imply that the foliation is
cobordant to zero ?

gv : Cobordism(Foliations on 3manifolds)→ R
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Theorem (Thurston) 1972
If M is a circle bundle over a compact surface, every codimension 1
foliation on M with no compact leaf can be isotoped to a foliation
transversal to the fibers, therefore associated to a group of
diffeomorphisms of the circle.



Haefliger Γ-structures

Codimension q Haefliger Γ-structure on a manifold X :

An open covering Ui of X .
Continuous maps fi : Ui → Rq,
A cocycle θi ,j of C∞ diffeomorphisms of open sets of Rq such
that θj ,k ◦ θi ,j = θi ,k where it is defined and fj = θi ,j ◦ fi .

André Haefliger (1970) There exists a classifying space BΓ∞
q .

Every codimension q Γ-structure is the pull-back of a universal
structure by some map f : X → BΓ∞

q .
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Existence of codimension q foliations

Theorem (Thurston) 1973 : A codimension q ≥ 2 Γ-structure on
a compact manifold M is homotopic to a foliation if and only if its
(abstract) normal bundle embeds in the tangent bundle of M.





jiggling



Existence of codimension 1 foliations

Theorem (Thurston) 1973 : Every C∞ hyperplane field is
homotopic to a foliation.



Homotopy type of the classifying space : Mather et Thurston

Theorem 1973 : There exists a “natural” continuous map

B Diff r
c (Rq)→ Ωq(BΓr

q)

inducing an isomorphism in integral homology.

Corollaries :

Every plane field, in any dimension, is homotopic to a C 0

foliation.
Cobordism(Foliations on 3manifolds) ' H3(BΓ∞

1 ,Z) '
H2(Diff∞

c (R),Z).
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Warwick, Summer 76





On proofs and progress in mathematics, Thurston 1994

“I believe that two ecological effects were much more
important in putting a damper on the subject than any
exhaustion of intellectual resources that occurred.
First, the results I proved [...] were documented in a
conventional, formidable mathematician’s style. They
depended heavily on readers who shared certain
background and certain insights. [...] The papers I wrote
did not (and could not) spend much time explaining the
background culture. They documented top-level reasoning
and conclusions that I often had achieved after much
reflection and effort.”



On proofs and progress in mathematics, Thurston 1994

“Second is the issue of what is in it for other people in the
subfield. When I started working on foliations, I had the
conception that what people wanted was to know the
answers. I thought that what they sought was a collection
of powerful proven theorems that might be applied to
answer further mathematical questions. But that’s only
one part of the story. More than the knowledge, people
want personal understanding. And in our credit-driven
system, they also want and need theorem-credits.”





Back to Godbillon-Vey invariant.

What is the “qualitative meaning” of a non zero Godbillon-Vey
number ?

Suppose two codimension one foliations of class C∞ on a 3
manifold are topologically equivalent. Do they have the same
Godbillon-Vey number ?



Godbillon-Vey : some kind of self linking number of a
foliation ?

Dennis Sullivan :

Let F be a codimension 1 foliation on M3.
Choose a flow φt transverse to the foliation.
Think of F as a 2-current : approximate by a large number of large
balls in leaves.

Compute link(F, φt(F) =
∫
M dω ∧ (φt)?ω

gv(F) =
d2

dt2
link(F, (φt)?(F))|t=0
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Godbillon-Vey and resilient leaves

Theorem (Duminy) 1982 : If gv(F) 6= 0, there is a resilient leaf.



Godbillon-Vey and projective group

Let R : π1(Σ)→ Diff∞
+ (S1).

Obstruction to be projective in

schwarz(R) ∈ H1(Diff∞
+ (S1), {u(x)dx2})

If Rt depends on a parameter,

dRt

dt
∈ H1(Diff∞

+ (S1), {v(x)
∂

∂x
})

Pairing

H1(π1(Σ)), {u(x)dx2})⊗ H1(π1(Σ), {v(x)
∂

∂x
})

→ H2(π1(Σ), {w(x)dx})→ R
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Godbillon-Vey and projective group

Theorem (Maszczyk) 1999

d gv(Rt)

dt
= schwarz(Rt).

dRt

dt



Gelfand and Fuchs simple model : "piecewise projective
foliations"

Start with a simplicial complex.
Foliate each simplex by a pencil of hyperplanes containing a
codimension 2 subspace, disjoint from the simplex.
All these foliations should be coherent on boundaries of simplices.



Gelfand and Fuchs simple model : "piecewise projective
foliations"
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Gelfand and Fuchs simple model : "piecewise projective
foliations"

Theorem (Gelfand and Fuchs)

There is a classifying space BPL.
There is a non trivial “Godbillon-Vey invariant” H3(BPL,R).



A combinatorical cocyle for "piecewise projective foliations"

Rogers L function for 0 < x < 1.

L(x) = −1
2

∫ x

0

(
ln(1− t)

t
+

t
1− t

)
dt − π2

6

Theorem

The Gelfand-Fuchs-Godbillon-Vey invariant on piecewise
projective foliations is represented by L evaluated on the cross
ratio of four hyperplanes.
H3(BPL,Z)→ R is injective !
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Thurston cocycle on the group of diffeomorphisms of the
circle

Thurston(f , g , h) =

∫
S1

∣∣∣∣∣∣
1 lnDf d lnDf
1 lnDg d lnDg
1 lnDh d lnDh

∣∣∣∣∣∣ dt
is a homogeneous 2-cocycle on Diff which represents the
Godbillon-Vey class.



What is the “natural” domain of definition of Godbillon-Vey ?

∫
S1 x(t) dy(t) is the area of a curve (x(t), y(t)) in the plane.

C 2 foliations.
f of class C 1 such that lnDf has bounded variation (Duminy
and Sergiescu).
f is of class C 1+α with α > 1/2 (Katok-Hurder)
BΓ1+α

1 is contractible if α < 1/2 (Tsuboi).
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Malliavin-Shavgulidze “Haar measure”.

How to choose a diffeomorphism of the circle “at random” ?
Choose it so that the log of its derivative is a random function on
the circle.

Choose a random path t ∈ [0, 1] 7→ u(t) ∈ R with u(0) = 0.
Transform it into a random bridge
t ∈ [0, 1] 7→ b(t) = u(t)− tb(1), so that b(0) = b(1) = 0.
Define a random diffeomorphism of the circle R/Z by

f (t) = f (0) +
exp(

∫ t
0 b(t) dt)

exp(
∫ 1
0 b(t) dt)

where f (0) is random with respect to the Lebesgue measure.

This defines the Malliavin-Shavgulidze probability measure on
Diff+

1 (S1).
Almost surely, the derivative of a circle diffeomomorphism is Holder
1/2.
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Theorem (Malliavin / Shavgulidze) :

This probability measure is quasi-invariant under left translations by
C 3-difffeomorphism.

d(Lφ)?µ

dµ
(f ) = exp

(∫
S1

Sφ(f (t))(f ′(t))2dt
)



Michele Triestino



Michele Triestino

Using stochastic integration, the Thurston cocycle can be defined
almost everywhere in Diff1

+(S1) and defines a measurable
Godbillon-Vey cohomology class.

∫
B1(t) dB2(t)

Problem : Compute the “measurable Gelfand-Fuchs cohomology”
Diff1

+(S1) with respect to Malliavin-Shavgulidze measure.
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A lost theorem of Thurston ?

Theorem ? ? ? ? ? ? ?
The cube of the Euler class eu ∈ H2(Diff+

analytic(S1),Z)) vanishes.

“I forgot !”
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