Knots and Dynamics

Étienne Ghys Unité de Mathématiques Pures et Appliquées CNRS - ENS Lyon

Lorenz equation (1963)

$$\frac{dx}{dt} = 10 (y - x)$$
$$\frac{dy}{dt} = 28x - y - xz$$
$$\frac{dz}{dt} = xy - \frac{8}{3}z$$

Birman-Williams: Periodic orbits are *knots*.

Topological description of the Lorenz attractor

Birman-Williams: Lorenz knots and links are very peculiar

- Lorenz knots are prime
- Lorenz links are fibered
- non trivial Lorenz links have positive signature

 $\mathbf{0}_1$ Unknot $\mathbf{3}_1$ trefoil $\mathbf{5}_1$ Cinquefoil $\mathbf{7}_1$

4₁ Figure eight

Schwarzman-Sullivan-Thurston etc.

One should think of a measure preserving vector field as « an asymptotic cycle »

$$k(T, x) = \begin{cases} x \xrightarrow{\phi \text{ orbit}} \phi^T(x) \xrightarrow{segment} x \end{cases}$$

Flow
$$\approx$$
 " $\lim_{T \to \infty}$ " $\int \frac{1}{T} k(T, x) d\mu(x)$

Example : helicity as asymptotic linking number

Example : helicity as asymptotic linking number

Theorem (Arnold) Consider a flow in a bounded domain in \mathbb{R}^3 preserving an ergodic probability measure μ (not concentrated on a periodic orbit). Then, for μ -almost every pair of points x_1, x_2 , the following limit exists and is independent of x_1, x_2

$$Helicity = \lim_{T_1, T_2 \to \infty} \frac{1}{T_1 T_2} Link(k(T_1, x_1), k(T_2, x_2))$$

Open question (Arnold): Is *Helicity* a topogical invariant ?

Let ϕ_1^t and ϕ_2^t be two smooth flows preserving μ_1 and μ_1 . Assume there is an orientation preserving homeomorphism h such that $h \circ \phi_1^t = \phi_2^t \circ h$ and $h_* \mu_1 = \mu_2$ Does it follow that

Helicity $(\phi_1^t) = Helicity(\phi_2^t)$?

http://www.math.rug.nl/~veldman/movies/dns-large.mpg

Suspension: an area preserving diffeomorphim of the disk defines a volume preserving vector field in a solid torus.

Invariants on Diff (\mathbf{D}^2 , area)?

Theorem (Calabi): *There is a non trivial homomorphism* $Cal: \operatorname{Diff}^{\infty}(D^2, \partial D^2, area) \rightarrow \mathbf{R}$

Theorem (Banyaga): *The Kernel of Cal is a simple group.*

Theorem (Gambaudo-G): Cal(f) = Helicity(Suspension f)

Theorem (Gambaudo-G): *Cal is a topological invariant*.

Corollary : Helicity is a topological invariant for those flows which are suspensions.

A definition of Calabi's invariant (Fathi)

 $f \in \text{Diff}^{\infty}(\text{D}^2, \partial \text{D}^2, area)$ $f_t \ (t \in [0,1])$ $f_0 = Id \qquad f_1 = f$

 $Cal(f) = \iint Var_{t=0}^{t=1} Arg(f_t(x) - f_t(y)) dx dy$

Open question (Mather):

Is the group Homeo(\mathbf{D}^2 , $\partial \mathbf{D}^2$, area) a simple group?

• Can one extend *Cal* to homeomorphisms?

• Good candidate for a normal subgroup: the group of « hameomorphisms » (Oh). Is it non trivial? More invariants on the group $\text{Diff}(\mathbf{D}^2, \partial \mathbf{D}^2, \text{area})$?

No homomorphism besides Calabi's...

Quasimorphisms $\chi: \Gamma \rightarrow \mathbf{R}$

Homogeneous if $\chi(\gamma^n) = n\chi(\gamma)$

 Γ non abelian free group

Many non trivial homogeneous quasimorphisms (Gromov, ...)

 $\left|\chi(\gamma_1\gamma_2)-\chi(\gamma_1)-\chi(\gamma_2)\right| \leq Const$

Abelian groups or SL(n,**Z**) for n>2)

No non trivial (Trauber, Burger-Monod) **Theorem** (Gambaudo-G) *The vector space of homogeneous* quasimorphisms on Diff(\mathbf{D}^2 , $\partial \mathbf{D}^2$, area) is infinite dimensional.

One idea: use **braids** and quasimorphisms on braid groups.

$$(x_1, x_2, ..., x_n) \mapsto b(x_1, x_2, ..., x_n) \in \mathbf{B}_n \xrightarrow{\chi} \mathbf{R}$$

Average over *n*-tuples of points in the disk

Example: n=2. Calabi homomorphism.

More quasimorphims...

$\textbf{Theorem} \ (Entov-Polterovich):$

There exists a « Calabi quasimorphism » χ :Diff₀(\mathbf{S}^2 , area) $\rightarrow \mathbf{R}$ such that $\chi(f) = Cal(f_{|D})$ when the support of f is in a disc D with area < 1/2 area(\mathbf{S}^2).

Theorem (Py):

If Σ is a compact orientable surface of genus g > 0, there is a « Calabi quasimorphism » χ : Ham(Σ , area) $\rightarrow \mathbb{R}$ such that $\chi(f) = Cal(f_{|D})$ when the support of f is contained in some disc $D \subset \Sigma$.

Questions:

• Can one define similar invariants for volume preserving flows in 3-space, in the spirit of (Cal(f) = Helicity(suspension f)))

• Does that produce topological invariants for smooth volume preserving flows?

• Higher dimensional topological invariants in symplectic dynamics?

• etc.

Topology: $SL(2,\mathbf{R})/SL(2,\mathbf{Z})$ is homeomorphic to the complement of the trefoil knot in the 3-sphere

Dynamics

On lattices
$$\phi^{t}(\Lambda) = \begin{pmatrix} e^{t} & 0\\ 0 & e^{-t} \end{pmatrix} (\Lambda)$$

Periodic orbits

- Conjugacy classes of hyperbolic elements in PSL(2,Z)
- Closed geodesics on the modular surface D/PSL(2,**Z**)
- Ideal classes in quadratic fields
- Indefinite integral quadratic forms in two variables.
- Continuous fractions etc.

Each hyperbolic matrix A in PSL(2,**Z**) defines a periodic orbit in SL(2,**R**)/SL(2,**Z**), hence a closed curve $\boldsymbol{k}_{\mathbf{A}}$ in the complement of the trefoil knot.

Questions :

1) What kind of knots are the « modular knots » k_A ?

2) Compute the linking number between k_A and the trefoil.

Theorem: The linking number between k_A and the trefoil is equal to $\mathcal{R}(A)$ where \mathcal{R} is the « Rademacher function ».

Dedekind eta-function :
$$\eta(\tau) = \exp(i\pi\tau/12) \prod_{n\geq 1} (1 - \exp(2i\pi n\tau))$$
 ; $\Im(\tau) > 0$
 $\eta \left(\frac{a\tau + b}{c\tau + d}\right)^{24} = \eta(\tau)^{24} (c\tau + d)^{12}$; $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z})$
 $24(\log \eta) \left(\frac{a\tau + b}{c\tau + d}\right) = 24(\log \eta)(\tau) + 6\log(-(c\tau + d)^2) + 2i\pi \Re(A)$

 \mathfrak{R} : $SL(2,\mathbb{Z}) \to \mathbb{Z}$ This is a quasimorphism.

« Proof » that
$$\Re(A) = Linking(k_A, \$$

Jacobi proved that

$$(g_2^3 - 27g_3^2)(\mathbf{Z} + \tau \mathbf{Z}) = (2\pi)^{12} \eta(\tau)^{24}$$

 $g_2^3 - 27g_3^2 = 0$ is the trefoil knot

 $\log(z) = \log|z| + i \operatorname{Arg}(z)$

 $(g_2^3 - 27g_3^2)(\Lambda) \in \mathbf{R}^+$ is a Seifert surface

Theorem:

Modular knots (and links) are the same as Lorenz knots (and links)

Step 1: find some template inside $SL(2,\mathbf{R})/SL(2,\mathbf{Z})$ which looks like the Lorenz template.

Look at « regular hexagonal lattices »

and lattices with horizontal rhombuses as fundamental domain with angle between 60 and 120 degrees.

Make it thicker by pushing along the unstable direction.

Step 2 : deform lattices to make them approach the Lorenz template.

Further developments?

•From modular dynamics to Lorenz dynamics and vice versa?

• For instance, « modular explanation » of the fact that all Lorenz links are fibered?

Many thanks to Jos Leys !

Mathematical Imagery : http://www.josleys.com/

«A mathematical theory is not to be considered complete until you made it so clear that you can explain it to the man you meet on the street »

« For what is clear and easily comprehended attracts and the complicated repels us »

